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Abstract. The algorithm known as Pure Adaptive Search is a global optimisation ideal with desirable 
complexity. In this paper we temper it to a framework we term Somewhat Adaptive Search. This 
retains the desirable complexity, but allows scope for a practical realisation. We introduce a new 
algorithm termed Pure Localisation Search which attempts to reach the practical ideal. For a certain 
class of one variable functions the gap is bridged. 
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1. In troduct ion  

The ideal of Pure Adaptive Search (PAS) has been introduced and discussed in 
[10] and [16]. Pure Adaptive Search occurs when we are always able to choose the 
next evaluation point according to a uniform distribution on the improving region, 
or "inside the level set", of the feasible space. In [16] it was shown that when Pure 
Adaptive Search is applied to global mathematical programs satisfying a Lipschitz 
condition, the expected number of iterations to convergence increases at most lin- 
early in the dimension of the problem, a desirable complexity result. Convergence 
here occurs when the lowest known value is within a given tolerance of the glob- 
al minimum. A difficulty which immediately arises is that Pure Adaptive Search 
appears to be hard to realise in practice. Encouragement, however, comes from the 
observation that several other practical random search algorithms have reported 
linearity in dimension, for example [ 13], although only for convex programs. 
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Pure Adaptive Search can be implemented, albeit very inefficiently, by run- 
ning Pure Random Search (PRS) and accepting only those points which provide 
improved function evaluations. Two attempts have already been made to provide 
a more efficient implementation. These are the Improving Hit-and-Run algorithm 
[17], and the Hide-and-Seek algorithm [4]. The purpose of this paper is to approach 
the problem from a third perspective, which we now describe. 

The central idea is to focus on an enlargement of the level set of Pure Adaptive 
Search. A delicate balancing act is required. The enlargement must be accessible in 
practice, yet small enough to retain the properties of PAS. Such an enlargement is 
provided by the deterministic algorithms for mathematical programs satisfying the 
Lipschitz condition found in [11, 12, 9, 15]. These have the property that, at each 
iteration, regions which cannot contain the global minima are stripped away from 
the domain. A general framework for such algorithms is described in [2]. Basso 
in [3] uses the word "localisation" for the resulting enlargement of the level set 
which is known to contain the global minimisers. Both [9] and [15] reduce to the 
well-known Piyavskii-Shubert algorithm, [11] and [12], for functions of a single 
variable. The localisations they provide reach towards the level set of PAS. 

Is there an efficiently implementable algorithm, based on a stochastic variant 
of the Piyavskii-Shubert algorithm, which can realise the desirable complexity of 
PAS? This paper initiates a study of this question. 

We begin by modifying PAS to an algorithm which we term Somewhat Adaptive 
Search (SAS). Somewhat Adaptive Search is a relaxation of Pure Adaptive Search, 
and is more likely to be efficiently implementable, yet still possesses the desirable 
complexity of PAS (Theorem 2.1 and Corollary 2.1). In the same breath, we 
modify the Piyavskii-Shubert style of algorithm to a stochastic search we term Pure 
Localisation Search (PLS). This algorithm chooses uniformly from the localisation. 
The convergence properties of PLS lie between PRS and PAS (Theorem 3.2 and 
Corollary 3.1). We conclude by showing that for a class of functions of a single 
variable, PLS does realise an SAS algorithm. This is shown in the last set of results 
(Theorem 4.1 and Corollary 4.1). 

The layout of the paper is as follows. In Section 2 we introduce Somewhat 
Adaptive Search, prove the linear complexity result, and discuss the special case of 
"p-adaptive" search. In Section 3 we define Pure Localisation Search and introduce 
spherical and simplicial realisations of this algorithm. The link between SAS and 
PLS is made in Section 4, where we show, for a limited class of functions, that the 
above realisations of PLS are SAS. Numerical results which confirm the theoretical 
results, and indicate directions for future research, are given in Section 5. 

2. Somewhat Adaptive Search (SAS) 

Throughout we consider the global optimization problem 
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Initial Step: 

Iterative Step: 

where f is a real-valued function on a convex, compact full-dimensional subset S 
of R n. We denote the optimal solution by (x,, y,) ,  where x, E argminxcs f ( x )  
and !1, = f ( x , ) .  It is convenient to define y* = maxxes f (x ) .  We do not require 
that a unique minimum point should exist. If there is more than one, we choose x,  
arbitrarily. 

We will consider stochastic sequential search procedures whose aim is to locate 
(x,,  y,).  We use a number of random variables and denote them using upper case 
letters, following standard statistical practice. The sample path of evaluation points 
we denote X1, X2, .. �9 and the associated function values ~ ,  Y2, . . . .  Epoch i > 1 
is said to be a record of the sequence {Yk} if Y / <  min{Ya,. . . ,  Y/-l} or Y~ = y,. 
For technical reasons it is convenient to include.the latter condition. Epoch i = 1 
is always considered to be a record. The corresponding value Y~ is called a record 
value. For k >_ 1 we let R(k)  denote the epoch of the kth record value of the 
sequence of evaluations. For k >_ 2, the number of iterations from the (k - 1)th to 
the kth record is denoted by Ik. Thus Ik = R(k)  - R(k  - 1). 

At times we refer to a specific realisation of a random variable by using corre- 
sponding lower case letters. For example xl, x2, . . . ,  a realisation of X1, X2 , . . . ,  
will denote a particular list, or sample path, of evaluation points in a given search 
procedure. Note that the random variable Ik is a function of such a sample path, 
whence Ik (w) refers to its value at the sample path denoted by w. 

The expected value of a random variable V is denoted by E(V) .  Two sequences 
of random variables are said to be stochastically equivalent if they have equal joint 
distributions. 

We pause to recall the definition of the PAS algorithm for solving problem 
(P): 

DEFINITION 2.1. Pure Adaptive Search (PAS) 

Set k = 0 and So = S. 

Increment k 
(i) Select evaluation point. 

Choose xk uniformly on Sk-1 if non-empty, 
else set xk = Xk_l 

Set wk = f (xk) .  
(ii) Update the improving region. 

Set Sk = f -1  (-oo,  wk). 

Stopping Criterion." Stop if a stopping criterion is met, else return to the 
iterative step. 

Mindful of the virtues of PAS, but aware of the impossibility of achieving it in 
practice, we now define a new class of algorithms. This is an attempt to keep these 
virtues while at the same time allowing room to construct practical algorithms. The 
algorithms require that two conditions should hold. The first allows the algorithm 
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to mark time between records, but not for too long, while the second insists that 
the quality of the records be as good as those of PAS. The first condition gives 
the space needed to implement the algorithm, while together they ensure that the 
"linearity in dimension" drawcard of PAS is retained. 

DEFINITION 2.2. A stochastic sequential search algorithm for solving (P) is 
termed Somewhat Adaptive Search (SAS) if the following two conditions are 
satisfied: 

(i) There exists a bound/3 > 1 such that E(Ik)  < 13 for all k, and 

(ii) {Yn(k) " k = 1, 2 , . . .}  is stochastically equivalent to {Wk " k = 1, 2 , . . .} ,  
the sequence of record values of PAS. 

In [ 16], for a non-constant function, Zabinsky and Smith define the relative improve- 
ment associated with an evaluation y > y. as z = (y* - y ) / ( y  - y,) .  In the context 
of this paper "relative value" would be a better name. We choose to retain, however, 
the original authors' terminology. In order to state our main theorem, we extend 
the language of [16] to: 

NSAS(Z) = the number of iterations of SAS achieving a relative improve- 
ment of z or less 

N~A (y) = the number of iterations of SAS required to achieve a value of 
y or lower. 

The wording of the above must be heeded carefully. The first expression is the 
number of iterations achieving something, while the second is the number required 
before something is achieved. The following relation is easy to show and worth 
noting: 

E(N~As(y) )  = 1 + E(NsAs(Z) )  

w h e n  z = (y*  - y ) / ( y  - y , ) .  

The corresponding expressions for PAS we denote by NpAS (Z) and N~d S (y): 

THEOREM 2.1. For SAS applied to problem (P), we have 

E [N~As(y)] <_ /3 E [N~As(y)].  

COROLLARY 2.1. Consider all global optimisation problems (P) over a convex 
feasible region in R n with diameter at most d, and all functions Lipschitz with 
parameter at most M.  Suppose an algorithm is SAS for this class o f  problems, and 
the bound in Definition 2.2 (i) is at most B. Then 

E[N~As(y)]  <_ B + [ B l n ( M d / ( y - y , ) ) ] n .  

That is, the bound is a linear function of  the dimension n o f  the problem. 
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Proof of Theorem. For a constant function some of the above terms are unde- 
fined. In this case it is easy to check that SAS is actually PAS and the theorem 
follows trivially. For a non-constant function, since the Ya(k) are stochastically 
equivalent to the Wk it follows that 

NSAS(Z) = I1 + 12 + . . .  + INpAs(Z ). 

Then E[NsAs(z)]  = E{E[[1-~-.. .-~-[NpAS(Z)INpAS(Z ) f ixed]} 

< E [flNpAs(Z)] 

= ~E [NpAs(Z)I. 

Converting this into a result about N~A S, we see 

N* * E [  SAS(Y)] <-- E [N~As(y)] - 1 + j3 

< J 3 E [ N p A s ( Y * - Y ) ]  +/3 
\ y  - y , /  

= Z E [g;~AS(y)] , as required. [ ]  

Proof of Corollary. When the conditions of Corollary 2.1 hold, it was shown 
in [16, Theorem 5.3] that E[N~As(y)] <_ 1 + [ln(Md/(y - y,))]n. Coupled with 
the result of Theorem 2.1, this gives the statement in the corollary. [ ]  

We pause to discuss a special case of SAS, namely "p-adaptive search". Informally, 
a search is p-adaptive, for some p, with 0 _< p < 1, if at each iteration the 
probability that it behaves as PAS is at least p. The letter p is chosen as a reminder 
of "record". 

DEFINITION 2.3. Let 0 < p < 1. A stochastic sequential search for solving (P) 
is termed p-adaptive if for each iteration k, and for all sample paths x l, . . . ,  x ~_ l, 

P [Xk is distributed uniformly in the improving region I x l , . . . ,  x~-l] > p 

In this framework, PRS becomes 0-adaptive, and PAS 1-adaptive. This language 
gives us a way of describing a spectrum of algorithms between these two extremes. 
Our next result shows that a p-adaptive algorithm, with p > 0, is always SAS. 

THEOREM 2.2. A p-adaptive algorithm, with 0 < p <_ 1, is SAS, with/3 = lip. 
Proof. The definition of p-adaptivity ensures at any iteration k, and independent 

of the sample path, the probability of a record is greater than or equal to p. Thus 
E (Ik) is less than or equal to the mean of a geometric distribution, with parameter p, 
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or E(Ik) <_ 1/p, for all k. Condition ii), that the YR(k) are stochastically equivalent 
to the RWk, follows via a straighforward modification of [16, Lemma 3.1]. [ ]  

This completes the setting up of the attainable ideal. 

3. Pure Localisation Search (PLS) 

We turn our attention now to a new and readily implemented algorithm for solving 
problem (P). In Theorem 3.1 we show that the records it produces are stochastically 
equivalent to those of PAS, while in Corollary 4.1 we show that it realises a 
SAS algorithm on a particular class of functions of a single variable. In spirit, 
the algorithm is a probabilistic analogue of the well-known Piyavskii-Shubert 
algorithm and its higher dimensional extensions, for example [9, 15]. We present 
the algorithm in a general setting initially. 

The central idea is the following. An exact tracking of the level set of PAS is an 
impossible task. Tracking a superset of it is not. Certain "removal" algorithms in the 
literature (for example [11, 12, 9, 15]), while deterministic, do yield a localisation 
for the level set at each iteration. 

DEFINITION 3.1. Pure Localisation Search (PLS) 

Initial Step: Set k = 0 and L0 = S. 
Set c~0 = c~. 

Iterative Step: 

Stopping Criterion: 

Increment k 
(i) Select evaluation point. 

Choose xk uniformly on Lk-1 if non-empty, 
else set xk = x k - 1 .  

Set Yk = f(x~). 
(ii) Update localisation. 

Set c~k = [ Yk, if y~ < ak-1 
( o~k-1, otherwise. 

Set Lk = L~-I - Rk, where the removal region Rk 
is such that Rk C S -  f - l ( - o c ,  c~). 

Stop if a stopping criterion is met, else return to the 
iterative step. 

We define Sy = f -1  ( -oe ,  y). Observe that the special case of PLS with Rk = r is 
PRS, while PLS becomes PAS when Rk = S -  S,~ k , so Lk = Sc~k. It follows readily 
from Theorem 3.2 of this section that PLS converges with probability one. 

An important observation concerning any PLS is that Lk D Sc~k, that is, the 
localisation always contains the improving set. 

That PLS always has the second property of SAS is shown in the next theo- 
rem. 
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T H E O R E M  3.1. For PLS applied to the global optimisation problem (P), the 
stochastic process of PLS record values is equal in distribution to the stochastic 
process of PAS record values. That is 

{YR(~) " k = 1 , 2 , . . . }  ~ {Wk" k = 1 , 2 , . . . } .  

Proof. The proof  is an extension of  [16, L e m m a  3.1]. First we show that the 
condit ional  distributions are equal. Let k be any iteration and take y, _< y < y~ _< 
y*. Note that 

P[Wk-.F1 < ylWk = y'] = P[YR(k)+j < ylYn(k) = y' and 

YR(k)+J >-- Y'.. .YR(k)+j-1 >_ Y' and YR(k)+j < Y'] 

since both sides equal A(Sy)/A(Sy,). Here A denotes Lebesgue measure on a ~. 
Then we have 

P[YR(k+I) < Y[YR(k) = Y'] 

= P[YR(k)+l < Y[YR(k) = Y'] + P[YR(k)+I 2 y' and 

YR(k)+2 < Y[YR(k) = Y'] + ' ' "  

= P[YR(k)+I < Y'[YR(k) = Y']" P[YR(k)+l < Y[YR(k) = Y' and YR(k)+l < Y'] 

+P[YR(k)+I 2 y'lYR(k) = Y']'P[YR(k)+2 < Y'[YR(k) = Y' and YR(k)+I > Y']" 

P[YR(k)+2 < YtYR(~) = Y' and YR(k)+l --> Y' and YR(k)+2 < Y'] + " "  

= [p~ + (1 - P,)P2 + (1 - p l ) (1  - Pz)P3 + ' "  "] P[W~+l  < y[W~ = y'] 

where Pi = P[YR(k)+i < Y' [ MR(k) = Y' and YR(k), . . . ,YR(~)+i-1 _> Y'], the 
probability that the first record after the kth record occurs at epoch R(k) § i. Here, 
f rom the key feature of  PLS, we have S v, C LR(k)+i_l so for all i, 

= > 

So the sequence {pi} is bounded away from zero, and by an elementary argument  
Pl + (1 - Pl)P2 + . . . .  1. Thus 

P[YR(k+I) < Y[u = Y'] = P[Wk+l  < ylW~ = y']. 

We now use induction to show that the uncondit ional  distributions are equal. By 
convention,  R(1)  = 1 and from the definition of PLS, PlY1 < y] = P[W1 < y] 
for all y, for y. _< y _< y*. Hence YR(1) "~ W1. 

Now consider  k > 1 and suppose that Yn(o ~ Wi for i = 1 , 2 , . . . ,  h. Then, for 
all y. <_ y <_ y*, we have 

ff P[Yn(k+l) < Y] = P[YR(k+l) < Y[YR(k) = t]dFrR(k)(t) 

ff = P[W~+I < y[Wk = t]dFwk(t) 

= P[Wk+l < y] 
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The second equality follows using the equality of conditional distributions and the 
induction hypothesis. By induction it follows that the two sequences are equal in 
marginal distribution, hence in joint distribution, as required. [ ]  

The way in which PLS is sandwiched between PRS and PAS is made clear in the 
next theorem and its immediate corollary. 

THEOREM 3.2. F& f as in problem (P), and fix a relative improvement level 
z > O. Let NpAS(Z), NFLS(Z) and NpRs(z) be the number of iterations of PAS, 
PLS and PRS respectively, achieving a relative improvement of z or less. Then 

P[NpAs(Z) < k] > P[NpLs(Z) < k] >_ P[NpRs(z) < k]. 

COROLLARY3.1. 

(i) E[NpAs(Z)] < E[NpLs(Z)] < E[NpRs(Z)] 

(ii) Nf AS(Z) < X Ls(Z) <_ Y Rs(Z) where N Lg(z) is the number of 
iterations of the algorithm required to achieve a relative improvement of z 
with probability not less than p. 

Proof of Theorem. Let y correspond to the relative improvement of z. Then 

P[NpAs(Z) < k] = P[Wk <_ y] 

= P[YR(k) --< Y], by Theorem 3.1 

> P[NpLs(Z) < k] 

since if PLS achieves a relative improvement of z before the kth iteration then 
Yk < Y, whence YR( k ) < Y �9 

In order to show that P[NpLs(Z) < k] > P[NpRs(z) < k] we now show that 
P[NpLs(z) > k - 1] <_ P[NpRs(z) > k - 1]. Note that i = NpLS(Z) + 1 is the 
first epoch such that xi E Sy. Thus, for any k, k = 1, 2, . . . .  

P[NpLs(Z) > k - 1] = P[xl ~ S u and x2 ~ Su . . .  and x~ r Sv] 

= P[xl f[ Sy]P[x2 f[ Sylxl f[ Sy]... 

P[xk ~ Sy[xl, . . . ,Xk-1 f[ Sy] 

Consider a PLS sample path with first j - 1 domain points not in Sy, where 
j E {1 , . . . ,  k}. Then c~j-1 _> y, so S~_ l D_ Sy, or Lj- l  D_ Sy. It follows that 

P[xj E SylXl , . . . ,  xj-1 ~- Sy] = )~(Sy)/)~(Lj-1) >_ ,~(Sy)/,~(S). 

Hence, 
P [ x j e  SylXl,.. .  , x j - I  ft Sy] > A(Sy)/A(S) 
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as it is the average of the above term over all initial segments X l , . . . ,  xj_ 1 of PLS 
sample paths with domain points not in Sy. Thus 

P[NpLs(Z) > k - l ]  < [1-A(Sy)/A(S)] k = P[NpRs(z)  > k - l ] .  [ ]  

4. Linking the Ideal of SAS to the Reality of PLS 

Earlier we noted that PRS is a trivial PLS but clearly not SAS. Is it possible to find 
a natural PLS algorithm and a class of functions which achieves SAS? This section 
is devoted to showing that the answer is, surprisingly, yes. 

Natural PLS algorithms for Lipschitz continuous functions 
When f is Lipschitz continuous with Lipschitz bound M, two realisations of PLS 
immediately arise. The first is a stochastic analogue of the method in [9], the second 
a stochastic analogue of the method in [15]. In the former, 

Rk = U Bi 
i=l,...,k 

where Bi is the ball of radius (yi - ~k ) /M,  centred at xi. In the latter, 

Rk= [.JC~ 
i=l,_.,k 

where Ci is a standard simplex of radius (Yi - o~k)/M, centred at x/. We call the 
former Spherical PLS, and the latter Simplicial PLS. Note that when n = 1 these 
two realisations of PLS reduce to the same algorithm. 

In [15] the term "bracket" was used to describe the n + 1 dimensional region 
known to contain the points on the graph at the global minima. This bracket can 
be used to implement PLS. The projection of this bracket onto the domain is what 
we term the localisation. When n = 1, both Spherical and Simplicial PLS yield a 
bracket composed of disjoint similar triangles. For higher dimensions Simplicial 
PLS produces a union of overlapping, but similar, simplexes. For Spherical PLS 
the bracket is more complicated to describe. 

We call both the above realisations, LPLS for "Lipschitz PLS". Note that they 
are non-trivial to implement. When n = 1 it is necessary to store a linked list of 
the intervals which comprise Lk. Selecting the next evaluation point is performed 
by choosing a random number in [0,1] and moving through the intervals to the xk 
value. Updating the localisation involves an updating of the linked list. For n > 1, 
Spherical PLS has the virtue of producing a tighter localisation than Simplicial PLS, 
since the removed ball always contains the removed simplex. On the other hand, 
choosing xk in Spherical PLS has so far been achieved through an acceptance- 
rejection approach, whereas with Simplicial PLS a linked list of simplex tops can 
be stored, and a procedure similar to the n = 1 case used to find xk, see [14, 15]. 
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A simple class of  functions of  one variable 
We begin by defining a function of a single variable which we call, for obvious 
reasons, the (upside down) "witch's hat". For h E [0, 1] we define the witch's hat 
of height h to be Wh(X) : min(Ixl, h), for x E [-1,  1]. Note that Wh is Lipschitz 
continuous, with Lipschitz constant M -- 1. It will be convenient to call the graph 
of Wh on [-- 1, - h ]  t2 [h, 1] the "brim", and Wh on [ -h ,  h] the "cap". We now define 
the class of functions, Ch, as all those one variable Lipschitz continuous functions 
with M = 1 which agree with Wh on [ -h ,  h] and elsewhere on [-1,  1] lie above 
Wh. 

When LPLS with M -- 1 is applied to a function in Ch, the localisation even- 
tually becomes the best possible, the inverse image of all values less than or equal 
to the best known, that is, f - l ( - c ~ , a k ] .  Note that for functions in Ch, when 
ak < h, this is just the interval [ - ak ,  ak]. This is formalised in the following 
theorem. 

THEOREM 4.1. Let f be any function in Oh, and f o r L P L S  with M = 1, let N be 
the number o f  iterations until the localisation becomes the level set. Then 

E[N] < 6 + 26/h. 

Before presenting the proof, we proceed to the consequence: 

COROLLARY 4.1. For functions in Oh, LPLS with M = 1 is SAS, with /3 = 
6 + 26/h. 

Proof. Partition the sample paths as t0i~=lf~i, where f~i is the set of all sample 
paths for which the localisation becomes the level set at the ith iteration. Then for 
each w E f~i, afortiori Ik(w) <_ i for all k, since for such sample paths there are 
at most i iterations from any one record to the next. Thus 

( x )  

E(Ik)  < ~-~P[~i] i  = E[N] 
i = l  

for any k. It follows that condition (i) of SAS is satisfied with 3 = 6 + 26/h, using 
Theorem 4.1. Condition (ii) of SAS follows at once from Theorem 3.1. [ ]  

Proof o f  Theorem 4.1. Take f C Ch. A typical situation which would arise 
when running LPLS on f ,  once an evaluation is found less than h, is shown in 
Figure 1. 

The localisation, Lk, consists of four parts: 
1. The level set, Ak. 
2. A finite union of intervals, Bk, under the brim. 
3. One interval, C~, to the left of Ak and under the cap. 
4. One interval, C~, to the right of Ak and under the cap. 
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Y 

Fig. 1. Running LPLS on f E Ch: the four parts A, B = B1 t.3 B2 I..J B3 U B4, C l and C ~ of 
the localization are shown. The situation illustrated is cap separated. 

These sets are indicated in Figure 1. Denote the total length of  these sets by a,b,c ~, 
and c r respectively. The maximum vertical extent of part of the bracket is called 
its depth. We say at any stage that the run is cap separated if there has been an 
evaluation under the cap both to the left and to the right of the origin. 

Four facts are needed in the final proof of  the theorem. We present these now. 
The first three are readily shown; we give a proof for the fourth. 

FACT 1. I f  the run at the kth iteration is cap separated, then the depth of  the 
bracket over the complement of  Ak is less than or equal to b + c ~ + c r. 

FACT 2. Denote by d the depth of  the bracket over the complement of  Ak. Then 
P[Bk+I U C~+ 1 U C~+ 1 = r [ X l , . . . , x k ,  and that Xk+l E Ak] >_ (a - 2d)/a 
where a and d are the values after the kth iteration. 

FACT 3. P[Ctk+t = r I X l , . . . , x k ,  and that Xk+l e clk] ~> 1/2. 

FACT 4. Consider t E (0, h). I f  c~k, the lowest evaluation immediately after the 
kth iteration, is less than t, then the number of  further iterations under the brim 

[ 1 - h i  is less than or equal to 2 ~ , where Ix 1 is the least integer greater than or 

equal to x. 

Proof of  Fact 4. Suppose that after k iterations we have c~k < t < h. Let 
Zl,Z2, . . .  be the later iterations of  LPLS which are in [h,1]. I f  i < j then 
Zj ~ "-Bh_t(Zi), the closed interval of radius h - t centred at z~, s o  { -B (h _ t ) / 2 ( z i )  �9 

i = 1, 2 , . . . }  is a mutually disjoint collection of closed intervals whose union is a 
subset of  [h - (h - t ) /2 ,  1 + (h - t)/2].  It follows that the collection must be finite, 
having say m elements, and furthermore, that m(h  - t) < 1 - t. Thus m is less 
than or equal to the biggest integer less than (1 - t ) / (h  - t) = (1 - h) / (h  - t) + 1. 
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1 - hi  This is ~ . Fact 4 then follows by doubling this figure. [ ]  

The heart of the proof of the theorem rests in recognizing that if we count Nt, the 
number of iterations until the lowest known evaluation is less than t, and also the 
number of subsequent iterations, Np, until we can be sure that the localisation is 
the level set, then Nt + Np is greater than or equal to N. 

Following the iteration Nt at which aN~ < t, we define five types of "progress" 
event which can occur. These are: 

,,p~,, 

"P2" 

"P3" 

"P4" 

"Ps" 

Cap separation occurs for the first time at the (k + 1)th iteration. 

C~ r r and C/k+l = r 

C~ 5~ r and C ; +  1 = r 

Xk+l G Bk 

Bk+l U Clk+l t..J C;+ 1 : r 

Informally, a progress step is a movement towards the localisation becoming the 
level set, progress step five. Note that steps one, two and three can occur only once, 
while step four can occur at most 2~(1 - h)/(h - t)l times. Thus, once there has 
been 2 [(1 - h)/(h - t)] + 3 progress steps following iteration Nt, the localisation 
a~ast equal the level set. If we let 

Nt = the number of iterations, k, until ak < t, and 

Np = the number of iterations following the N[ h iteration 

to achieve 2F(1 - h)/(h - t)l + 3 progress steps, 

we have N < Nt + Np, so E[N] < E[Nt] + E[Np]. 
Certainly E[Nt] is smaller for LPLS than PRS on f .  For PRS on f ,  the distri- 

bution of the number of iterations until a value less than or equal to t is geometric, 
with probability t. Thus E[Nt] <_ lit. 

We conclude the proof by showing that once we have ant  < t, then the 
probability of a progress step is always at least 1/6. The distribution of Np is 
negative binomial, so E[Np] <_ 6(2 [(1 - h)/(h - t)l + 3), whence 

1 Vlhl 1 Flh 1 E [ N ] _ < ~ - + 6 ( 2  ~ + 3 ) = 1 8 + ~ + 1 2  ~ . 

Putting t = hi2 and removing the "least integer greater than or equal" symbols 
demonstrates the statement in the theorem. 

In order to show that the probability of progress is always greater than or equal to 
1/6, we consider three cases. We suppose we have an initial segment of x l , . . . ,  xk, 
and c~k < t. 
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Case 1. The bracket is not cap separated. Then 

P[progress at (k + 1)st iteration] 

>_ P[P~] + P[Xk+l c c~ and P2] + P[x~+I ~ C~ and P3] + PIP4] 

cl/2 cT/2 > a /2  + + 
- a + c t + e r + b  a + e l + e r + b  a + c l + c ~ + b  

b 1 -~ > - .  
a + c l  +c~ + b  - 2 

a 2 
Case 2. The bracket is cap separated, and > - Then 

a + d  +c~ + b  - 3"  

P[progress at (k + 1 ) s t  iteration] 

> P[xk+l C Ak and Ps] + P[xk+l E C~ and P2] + P[xk+l C C~ and P3] 

+PIP4] 
a - 2(e t + c ~ + b) ct /2 

> + 
- a + c t + c ~ + b a + c t + c ~ + b 

b -k 
a + d  +c* + b  

a - 3/2(e t + c ~ + b) + b/2 

a + c t + c ~ + b 

a 3 c I + c ~ + b 
> 
- a + d + C + b  2 a + d + c ~ + b  

2 3 1  1 > 
- 3 2"3 6" 

Case 3. The bracket is cap separated, and 

c~/2 
+ 

a + d  +c~ + b  

a 2 
a + e  t + c  r + b  < 3"Then 

P[progress at ( k  + 1)st iteration] 

_> P[x~+l E C~ and P2] + P[xk+l E C~ and/93] + P[P4] 

> d/2 + 
- a + d + c . + b  

1 c 1 + c ~ + b 

- 2 a + d + c ~ + b  

1 1  1 > 
- 2"3 6" 

c~ /2  b 
+ 

a + c l  + c r  + b  a + c 1 + c r + b 

[] 
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5. Numerical  Results 

This section gives empirical support to results in the previous sections. Although 
the emphasis of this paper is on showing LPLS is an effectively implementable 
stochastic variant of the Piyavskii-Shubert algorithm which is SAS in a particular 
one-dimensional setting, we begin with a comparison of the various algorithms 
with the Piyavskii-Shubert algorithm. The second set of numerical tests show 
the bounds proved in Theorem 4.1 and Corollary 4.1 are conservative. The last 
tests show that for the higher dimensional analogue of the witch's hat, Simplicial 
PLS keeps some of the similarities from the one dimensional case. Evidence, 
however, suggests that even in this simple case the number of function evaluations 
to convergence is not linear with dimension. 

COMPARISON OF PAS, LPLS, P R S  AND THE PIYAVSKII-SHUBERT ALGORITHM 

IN DIMENSION ONE 

Generally speaking, compared with LPLS and PRS, Piyavskii-Shubert usually 
takes fewer function evaluations. For functions with a large number of nearly 
equal global minima, however, LPLS can on average require less work than the 
Piyavskii-Shubert algorithm to attain modest accuracy. Theorem 3.2 is empirically 
verified. It is interesting to note that the work required by the Piyavskii-Shubert 
algorithm and its stochastic variant, LPLS, is very similar to that required by the 
theoretical PAS. 

Two random selections of functions were made. We obtain the number of 
iterations until the global minimum is found to a specified tolerance, using the 
various algorithms. 

The first selection consisted of 69 Lipschitz continuous functions with M=I that 
usually had a small number of local minima, generally one. These were produced 
by an obvious modification of a procedure due to Graf et al. described in [6, pp.240- 
241]. Figure 2 shows that for this class the algorithms ranked from best to worst 
are PAS, Piyavskii-Shubert, LPLS and PRS. In this and the following example, 
for each function and each of PAS, LPLS and PRS, 100 runs were averaged. 

In [5] Chuyan and Sukharev showed, under a mild condition, that results from 
adaptive stochastic global optimisation algorithms are in a certain sense no better 
than results from non-adaptive stochastic global optimisation algorithms. At first 
glance this appears to contradict the histograms shown for LPLS and PRS in 
Figure 2, since it is evident that the average behaviour of LPLS is far better than 
that for PRS. Chuyan and Sukharev, however, prove the equality of a "best worst- 
case" performance measure, for adaptive and non-adaptive algorithms. Figure 2 
compares average behaviour, with objective functions drawn randomly using the 
Graf generation process. A much earlier paper, with results of the Chuyan and 
Sukharev type, dealing with deterministic algorithms and Lipschitz continuous 
functions, is that of Archetti and Betro [1]. 
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Fig. 2. Histograms showing the mean number of iterations to convergence, with e = 0.0005, 
for the 69 Graf-generated functions and the four algorithms. Note the different horizontal scale 
for PRS. 

The second selection consisted of  50 Lipschitz continuous functions with M= 1, 
of  the form (1/A)sin(Ax+B) where A and B were randomly chosen. In this selection 
all of  the functions have between one and eight global minima. Table I shows that 
for  this class the algorithms ranked f rom best to worst are PAS, LPLS, Piyavski i -  
Shubert, and PRS for modest accuracy, but PAS, Piyavskii-Shubert ,  LPLS and 
PRS when greater accuracy is required. 

TABLE I. Mean number of evaluations to convergence, 
with the two relative accuracy levels, for the 50 sinusoidal 
functions 

PAS Piyavskii-Shubert LPLS PRS 

O.1/A 3.0 5.6 5.5 7.6 
0.01/A 4.2 9.6 11.2 23.9 
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OBSERVED AND THEORETICAL RESULTS FOR LPLS ON WITCH'S HATS IN 
DIMENSION ONE 

Theorem 4.1 gave a theoretical upper  bound on the average number  of  iterations 
until the localization becomes  the level set for the witch 's  hat. Table II  compares  

this with the average observed number  of  iterations, over  1000 runs, thus showing 
that the theoretical bound is roughly ten times too large. The observed values of  
E[N] are conservat ive estimates for/3, as demonstrated in Corollary 4.1. Empir ical  
tests have shown that 13 is roughly one third of  E[N]. 

TABLE II. ,A comparison of the 
observed and the theoretical aver- 
age number of iterations until the 
localisation becomes the level set, 
for the witch's hat with varying 
values of h 

h Observed Theoretical 

1 4.8 32 
1/2 7.4 58 
1/3 9.8 84 
1/4 12.1 110 
1/8 21.4 214 

OBSERVED RESULTS FOR SIMPLICIAL PLS ON WITCH'S HAT IN HIGHER 
DIMENSIONS 

One higher dimensional  analogue of  the witch 's  hat is the upward facing simplicial 
cone defined over  a simplicial domain. For  this function with Simplicial PLS, the 
localization, as in dimension one, becomes  the level set. 

TABLE III. The behaviour of Simplicial PLS on higher dimensional 
analogues of the witch's hat 

Dimension 
Average observed number of iterations to convergence 
Localisation = level set Tolerance of 0.1 

1 4.8 4.9 
2 15 9.6 
3 37 17.4 
4 - 29.0 

The second column of  Table III  shows the average observed number  of  itera- 
tions, for 100 trials, for this to happen when the dimension is 1, 2 and 3. The third 
column of  Table I I I  shows the average observed number  of  iterations for conver-  
gence, to within e = 0.1 of  the global minimum,  for Simplicial PLS for dimensions 
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1, 2, 3 and 4. Evidently these numbers are not linear in dimension. For PAS it is 

shown in [16] that this quantity is linear in dimension, so this implementation 
of  Simplicial PLS is not "uniformly" close enough to PAS to maintain linearity 
in dimension. Empirically it appears that Simplicial PLS is SAS for the witch's 
hat in dimensions greater than one, but evidence suggests that the /3  values are 
unbounded. I f  there were a bound, then Simplicial PLS would be linear in dimen- 
sion (Corollary 2.1). However,  if the/3 values prove to be bounded by a function 
that is polynomial  in dimension, then polynomial complexity of  Simplicial PLS 
would result. 

Following submission of  this paper, Hansen et al. in [7, 8] have published an 
extended version of  the Piyavskii-Shubert  algorithm. It finds a set of  disjoint inter- 
vals, containing only points with globally c-optimal values, whose union contains 
all globally optimal points. It would be of  interest to compare LPLS with this 
algorithm. 
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